Computer Industry In US
Only once in a lifetime will a new invention come about to touch every aspect of
our lives. Such a device that changes the way we work, live, and play is a
special one, indeed. A machine that has done all this and more now exists in
nearly every business in the U.S. and one out of every two households (Hall,

156). This incredible invention is the computer. The electronic computer has
been around for over a half-century, but its ancestors have been around for 2000
years. However, only in the last 40 years has it changed the American society.

From the first wooden abacus to the latest high-speed microprocessor, the
computer has changed nearly every aspect of people\'s lives for the better. The
very earliest existence of the modern day computer\'s ancestor is the abacus.

These date back to almost 2000 years ago. It is simply a wooden rack holding
parallel wires on which beads are strung. When these beads are moved along the
wire according to "programming" rules that the user must memorize, all
ordinary arithmetic operations can be performed (Soma, 14). The next innovation
in computers took place in 1694 when Blaise Pascal invented the first
"digital calculating machine". It could only add numbers and they had
to be entered by turning dials. It was designed to help Pascal\'s father who was
a tax collector (Soma, 32). In the early 1800Ős, a mathematics professor named

Charles Babbage designed an automatic calculation machine. It was steam powered
and could store up to 1000 50-digit numbers. Built in to his machine were
operations that included everything a modern general-purpose computer would
need. It was programmed by--and stored data on--cards with holes punched in
them, appropriately called "punch cards". His inventions were failures
for the most part because of the lack of precision machining techniques used at
the time and the lack of demand for such a device (Soma, 46). After Babbage,
people began to lose interest in computers. However, between 1850 and 1900 there
were great advances in mathematics and physics that began to rekindle the
interest (Osborne, 45). Many of these new advances involved complex calculations
and formulas that were very time consuming for human calculation. The first
major use for a computer in the U.S. was during the 1890 census. Two men, Herman

Hollerith and James Powers, developed a new punched-card system that could
automatically read information on cards without human intervention (Gulliver,

82). Since the population of the U.S. was increasing so fast, the computer was
an essential tool in tabulating the totals. These advantages were noted by
commercial industries and soon led to the development of improved punch-card
business-machine systems by International Business Machines (IBM),

Remington-Rand, Burroughs, and other corporations. By modern standards the
punched-card machines were slow, typically processing from 50 to 250 cards per
minute, with each card holding up to 80 digits. At the time, however, punched
cards were an enormous step forward; they provided a means of input, output, and
memory storage on a massive scale. For more than 50 years following their first
use, punched-card machines did the bulk of the world\'s business computing and a
good portion of the computing work in science (Chposky, 73). By the late 1930s
punched-card machine techniques had become so well established and reliable that

Howard Hathaway Aiken, in collaboration with engineers at IBM, undertook
construction of a large automatic digital computer based on standard IBM
electromechanical parts. Aiken\'s machine, called the Harvard Mark I, handled

23-digit numbers and could perform all four arithmetic operations. Also, it had
special built-in programs to handled logarithms and trigonometric functions. The

Mark I was controlled from prepunched paper tape. Output was by card punch and
electric typewriter. It was slow, requiring 3 to 5 seconds for a multiplication,
but it was fully automatic and could complete long computations without human
intervention (Chposky, 103). The outbreak of World War II produced a desperate
need for computing capability, especially for the military. New weapons systems
were produced which needed trajectory tables and other essential data. In 1942,

John P. Eckert, John W. Mauchley, and their associates at the University of

Pennsylvania decided to build a high-speed electronic computer to do the job.

This machine became known as ENIAC, for "Electrical Numerical Integrator

And Calculator". It could multiply two numbers at the rate of 300 products
per second, by finding the value of each product from a multiplication table
stored in its memory. ENIAC was thus about 1,000 times faster than the previous
generation of computers (Dolotta, 47).ENIAC used 18,000 standard vacuum tubes,
occupied 1800 square feet of floor space, and used