Nerve Regeneration

Topic: New ways to aid in nerve regeneration. General Purpose: To inform

Specific Purpose: To inform the audience about news techniques and mechanisms
that aid in nerve regeneration. Central Idea Statement: The new techniques for
nerve regeneration involving magnetic, electrical, and chemical mechanisms look
very promising. INTRODUCTION I. The site is rather common: someone in a wheel
chair unable to use their lower body, or worse, unable to function from their
neck down because of an accident. You may even know one of these people. They
all have one thing in common: spinal nerve injury. To the majority of us, one of
the more famous and recent cases involving spinal trauma is that of Christopher

Reeve, known to most of us as Superman. Reeve was riding his horse when he fell
off, landed on the back of his head and twisted his neck. His spine was damaged
near the second cervical vertebrae; that being two vertebrae away from the base
of the skull. He states that after his accident he saw a handbook written in

1990 that "didn\'t even mention anyone higher than [the fourth cervical
vertebrae] because 70 percent of them didn\'t live longer than five days. I am
very lucky my injury happened at a time when treatment and surgery had
improved." Dr. Cotman from UCI, who worked with Reeve says that Reeve
remains optimistic that a cure is only a few million dollars away. II. Prior to
the end of the Second World War, if a person survived a severe spinal cord
injury, the injury still usually resulted in their early death. This was because
of complications that accompanied the injury, such as infections to the kidneys
and lungs. Though the development of new antibiotics has greatly improved life
expectancy, until recently medical science had not been able to restore nerve
function. III. According to researchers at the University of Alabama using data
from the regional SCI Centers, there are 7,800 traumatic spinal cord injuries
each year in the US. Yet these numbers do not represent accurate figures since

4,860 per year, die before reaching the hospital. Current estimates are that

250,000-400,000 individuals live with spinal cord injury or dysfunction;
forty-four percent of these occur in motor vehicle accidents. More than half of
these injuries occur to individuals who are single, and more than 80% of these
individuals are male. IV. Within the last five years, a great many things have
been happening in the area of neurological research. Research and treatment
involving spinal and nerve injury has progressed considerably. In this speech I
will inform you on the new and promising techniques that are currently
undergoing testing for human treatment, in terminology that we will be able to
understand. BODY I. The nervous system consists of the brain, spinal cord, and
all branching nerves. There are two parts: the central nervous system, or CNS,
and the peripheral nervous system, or PNS. The CNS, consists of the brain and
spinal cord, while the PNS involves all the nerves that branch off from the
spinal cord to the extremities. A. When the spine is crushed or bent in an
extreme accident, the spinal cord inside is severely bruised and compressed,
causing localized injury and death to many of the nerve cells and their fibers.

Some of injured nerves fibers survive intact, but lose their electrical
insulation, or myelin, over the very short distance of the injury zone. Nerve
impulses are blocked at this point. 1. The myelin is the part of the nerve that
actually transfers the electrical signal that enables your muscles to move when
you want them to move. B. Nerves regenerate at the rate of about a cm a month.

Keep in mind that not all nerves can regenerate (the spinal cord is a prime
example) and if a nerve is too damaged or is severed it cannot come back C.

Peripheral nerves will regenerate to a certain extent on their own, but they
don\'t regenerate over very long distances. D. The big problem with treating
spinal injuries is the fact that mature nerve tissue does not spontaneously
regenerate. II. The three basic ways to treat nerve damage are: first, produce
regeneration of the remaining segment of a nerve fiber, or make new connections
on the other side of the injury. Second, prevent or rescue the damaged nerve
fiber from proceeding on to separation, or perhaps even functionally reunite the
two segments, so that both portions of the fiber survive. Or third, facilitate
nerve impulse traffic to cross the region of injury in intact fibers where they
have lost their electrical insulation. III.