US Airlines
Deregulation of the U.S. airline industry has resulted in ticket prices dropping
by a third, on an inflation-adjusted basis. As a result some 1.6 million people
fly on 4,000 aircraft every day. Airlines carried 643 million passengers in

1998, a 25% increase over 1993 and the FAA estimates that the nation¡¦s
airline system will have to accommodate 917 million passengers by the year 2008.

The growth in air travel threatens to overwhelm the presently inadequate air
traffic control system, which has not kept pace with available technology in
navigation, communications, and flight surveillance. Much of the equipment used
for air traffic control today is based on fifty-year-old technology; for
example, analog simplex voice links for communications and ground-based radar
for surveillance, and VHF Omnidirectional Range/Distance Measuring Equipment (VOR/DME)
for navigation. The lack of system automation imposes heavy workloads on human
air traffic controllers and increases the risk of accidents in heavy traffic
situations. Capacity limits are being reached in both airports and airspace,
with congestion delays in departure and arrival schedules reaching record
numbers. Funds to upgrade the air traffic control system are available in the
trust fund created to receive the tax applied to airline passenger tickets and
the tax on fuel for general aviation. The General Accounting Office says
modernizing the air traffic control system will cost at least 17 billion for
just the first 5 years of the FAA¡¦s 15-year National Airspace System
improvement plan. It is the NAS that provides the services and infrastructure
for air transportation. Air transportation represents 6% of the Nation¡¦s
gross domestic product, so the NAS is a critical element of our national
economy. Given the size of the NAS, the task ahead is enormous. Our NAS includes
more than 18,300 airports, 21 air route traffic control centers, over 460 air
traffic control towers and 75 flight service stations, and approximately 4,500
air navigation facilities. The NAS spans the country, extends into the oceans,
and interfaces with neighboring air traffic control systems for international
flights. The NAS relies on approximately 30,000 FAA employees to provide air
traffic control, flight service, security, and field maintenance services. More
than 616,000 active pilots operating over 280,000 commercial, regional, general
aviation and military aircraft use the NAS. On March 11, 1999, the FAA released
the NAS Architecture Version 4.0 to the public. Key influences on the
architecture include the 1996 White House Commission on Aviation Safety and

Security, which recommended that the FAA accelerate modernization of the NAS,
and the 1997 National Civil Aviation Review Commission, which recommended
funding and performance management methods for implementing NAS modernization.

It describes the agency¡¦s modernization strategy from 1998 through 2015.

Based on the Free Flight operational concept, Version 4.0 contains capabilities,
technologies, and systems to enhance the safety of the aviation system and
provide users and service providers with more efficient services. Free Flight
centers on allowing pilots, whenever practical, to choose the optimum flight
profile. This concept of operations is expected to decrease user costs, improve
airspace flexibility, and remove flight restrictions. The NAS Architecture is
divided into three modernization phases and its implementation is being
synchronized with the International Civil Aviation Organization to ensure
interoperability and global integration. „h Phase 1 (1998-2002) focuses on
sustaining essential air traffic control services and delivering early user
benefits. Free Flight Phase 1 will be implemented. Controller computer
workstations will begin major upgrades. Satellite-based navigation systems will
be deployed, and air-to-air surveillance will be introduced. The ¡§Year 2000¡¨
computer problem will hopefully be fixed. „h Phase 2 (2003-2007) concentrates
on deploying the next generation of communications, navigation and surveillance
(CNS) equipment and the automation upgrades necessary to accommodate new CNS
capabilities. Satellite-based navigation systems will be further augmented in
local areas for more precise approaches. New digital radios that maximize the
spectrum channels will be installed. As users equip, automatic dependent
surveillance ground equipment will be installed to extend air traffic control
surveillance services to non-radar areas. Tools from Phase 1 will be deployed
throughout the NAS and upgraded as necessary. „h Phase 3 (2008-2015) completes
the required infrastructure and integration of automation advancements with the
new CNS technologies, enabling additional Free Flight capabilities throughout
the NAS. Two important features will be NAS-wide information sharing among users
and service providers and ¡§four-dimensional¡¨ flight profiles that utilize
longitudinal and lateral positions and trajectories as a function of time. The
goals for modernizing the NAS are based on improving: „h Safety ¡V such as
better weather information in the cockpit and on controller displays. „h

Accessibility ¡V such as instrument approaches to many more airports. „h

Flexibility ¡V such as allowing users to select and fly desired routes. „h

Predictability ¡V such